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In this paper we will extend the perturbing Liapunov function method to systems of
functional differential equations and discussφ0-equiboundedness andφ0-equistability
properties via the concept of perturbing Liapunov functional.
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1. Introduction

Let R
n be Ecludeann-dimensional real space, with any convenient norm‖ . ‖ and scalar

product (. , .) �‖ . ‖‖ . ‖, R
+ = [0, ∞) and C[R+ × R

n, R
n] denotes the space of

continuous mappingsR+ × R
n into R

n . The following definitions (Akpan & Akinyele,
1992) will be needed in the sequel.

DEFINITION 1.1 A proper subsetK ⊂ R
n is called acone if

(i) λK ⊂ K , λ � 0, (ii) K + K ⊂ K , (iii) K = K , (iv) K ◦ �= ∅, (v) K ∩ (−K ) = 0,
whereK and K ◦ denote the closure and interior ofK respectively, and∂K denotes the
boundary ofK . The order relation onRn induced by the coneK is defined as follows.

Let x, y ∈ K thenx �Ky ⇐⇒ y − x ∈ K , andx �K ◦
y
⇐⇒ y − x ∈ K ◦.

DEFINITION 1.2 ThesetK ∗ is called theadjoint cone if

K ∗ = {φ ∈ R
n : φ, x � 0}, x ∈ K ,

satisfies properties (i)–(v) of Definition 1.1.

DEFINITION 1.3 A function g : D → R
n, D ⊂ R

n , is called quasimonotone relative
to the coneK , if wheneverx, y ∈ D and y − x ∈ ∂K , there existsφ0 ∈ K �

0 such that
(φ0, y − x) = 0 and(φ0, g(y) − g(x)) � 0.

Consider the system of functional differential equations

x ′ = f (t, xt ), xt0 = ψ, (1.1)
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where f ∈ C[J × C0, K ], R
n is Euclideann-dimensional real space,J = [t0, ∞],

℘n = C[[−r, 0], R
n], C0 = {φ ∈ ℘n :‖ φ ‖0< ρ} and ‖ φ ‖0= max

−r�s�0
‖ φ(s) ‖ .

HereC[J × C0, K ] denotes the space of continuous mappingsJ × C0 into K . Forxt (s) =
x(t + s), −r � s � 0, andxt (t0, ψ) is a solution of (1.1) with initial valuesxt0 = ψ .
Define

s0(ρ) = {xt ∈ C0 :‖ xt ‖< ρ}.
The Liapunov function plays an essential role in determining the zero solution of the
system of ordinary of differential equations.

Lakshmikantham & Leela (1976) introduced the method of perturbing the Liapunov
function for systems of ordinary differential equations, and Soliman (2002) extended this
method to systems of functional differential equations. This method discussed non-uniform
properties of solutions of systems of differential equations.

Stability properties of systems of differential equations have been of interest to many
authors via perturbing Liapunov function (see Koksal, 1992a,b).The notion ofφ0-stability
was introduced by (Akpan & Akinyele, 1992), and in (El-sheikh & Soliman, 1995, 2000)
the notion was improved and extended to systems of functional differential equations.

The main purpose of this paper is to discuss the notions ofφ0-equiboundedness and
φ0-equistability of the system (1.1) via the perturbing Liapunov functional of (Soliman,
2002).

Following (Lakshmikantham & Leela, 1969b), we define a Liapunov functional:
V (t, xt ) ∈ C[J × C0, R

n] is Lipschitzain inxt , and the functional is

D+V (t, xt ) = lim
h→0+ sup

1

h
[V (t + h, xt+h) − V (t, xt )].

The first work dedicated to this method was done by Lakshmikantham & Leela (1976).
The following is somewhat new and is related to a definition of (Akpan & Akinyele,

1992).

DEFINITION 1.4 A solutionxt (t0, ψ) of (1.1) is said to beφ0-equibounded if there exist
positive constantsM(t0, δ) > 0 and δ > 0, such that forφ0 ∈ K ∗

0

(φ0, ψ) � δ �⇒ (φ0, x∗
t ) � M(t0, δ).

DEFINITION 1.5 (Akpan & Akinyele, 1992). The zero solution of (1.1) is said to be
φ0-equistable if forε > 0, t0 ∈ J , there exists a positive functionδ(t0, ε) > 0 that is
continuous int0 such that forφ0 ∈ K ∗

0

(φ0, x∗
t ) < ε, t � t0,

provided that(φ0, ψ) < δ, wherex∗
t is the maximal solution of (1.1).

In the case of uniformφ0-stability,δ is indepentent oft0.
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2. φ0-equiboundedness

In this section, we discussφ0-boundedness of the systems (1.1) via perturbing Liapunov
functional. Now, we define the following class.

DEFINITION 2.1 A function b(r) is said to be belong the classK if b ∈ C[(0, ρ), R
+],

b(0) = 0, b(r) −→ 0 asr −→ 0, andb(r) is strictly increasing inr .

THEOREM 1 Let E ⊂ C0 be a compact subset. Suppose that there exist two functionals
V1(t, xt ) ∈ C[J × Ec, K ], V2(t, xt ) ∈ C[J × sc

0(ρ), K ], and there exist two functions
G1 ∈ C[R+ × R

+, R
n], G2 ∈ C[R+ × R

+, R
n] with V1(t, 0) = V2(t, 0) = G1(t, 0) =

G2(t, 0) = 0 such that forφ0 ∈ K ∗
0

(A1) V1(t, xt ) is Lipschitzian inxt and

D+(φ0, V1(t, xt )) � G1(t, V1(t, xt )), (t, xt ) ∈ J × Ec; (2.1)

(A2) V2(t, xt ) is Lipschitzain with respect toxt and

b(φ0, x∗
t ) � (φ0, V2) � a(φ0, x∗

t ), (2.2)

wherea, b ∈ ℵ, φ0 ∈ K ∗
0, and(t, xt ) ∈ (J × sc

0);
(A3) for each(t, x∗

t ) ∈ J × sc
0,

D+(φ0, V1) + D+(φ0, V2) � G2(t, V1(t, xt ) + V2(t, xt )); (2.3)

(A4) if the zero solution of the system of differential equations

u′ = G1(t, u), u(t, u) = u0 (2.4)

is φ0-equibounded, and if the zero solution of the system

w′ = G2(t, w), w(t0) = w0 (2.5)

is uniformlyφ0-bounded.

Then the zero solution of (1.1) isφ0-equibounded.

Proof. SinceE is a compact subset ofC0, there existsρ > 0 such thats0(ρ) ⊃ s0(E, ρ0)

for someρ0 > 0, where

s0(E, ρ0) = {xt ∈ C0 : d(xt , E) < ρ0},
where

d(xt , E) = inf
yt ∈E

‖ xt − yt ‖ .

Let t ∈ R
+, α � ρ be given, assume thatα1 = α1(t0, α) = max(α0, α

∗), where

α0 = max[[V1(t0, ψ) : ψ ∈ s0(α) ∩ Ec]
andα∗ � V1(t, xt ), for (t, xt ) ∈ J × ∂ E .
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Since the zero solution of (2.4) isφ0-equibounded, givenα1 > 0 andt0 ∈ R
+, there

existsβ0 = β0(t, α1) such that forφ0 ∈ K ∗

(φ0, r1(t, t0, u0)) < β0, t � t0, (2.6)

whenever(φ0, u0) < α1, wherer1(t, t0, u0) is the maximal solution of (2.4).
Also, since the zero solution of (2.5) is uniformlyφ0-bounded, givenα2 > 0, t0 ∈ R

+,
there existsβ1(α2) > 0, such thatφ0 ∈ K ∗

0

(φ0, r2(t, t0, u0)) < β1(α1), t � t0, (2.7)

provided that(φ0, w0) < α2, wherer2(t, t0, w0) is the maximal solution of (2.5).
Now, we chooseu0 = V1(t0, ψ), andα2 = a(α) + β0. As b(u) −→ ∞ with u −→ ∞

we can chooseβ = β(t0, α) such that

b(β) > β1(α2). (2.8)

Now, let (φ0, ψ) ∈ s0(α), which implies that the maximal solutionx∗
t (t0, ψ) satisfies

(φ0, x∗
t ) ∈ s0(β) for t � t0. Suppose that this is not true, then there existst∗ > t0 for the

maximal solutionx∗
t (t0, ψ) of (1.1), with(φ0, ψ) ∈ s0(α), such that

(φ0, x∗
t∗(t0, ψ)) = β.

Sinces0(E, ρ) ⊂ s0(α), there are two possibilities to consider:

(I) xt (t0, ψ) ∈ Ec, for t ∈ [t0, t∗],
(II) there existst2 � t0 such that

xt (t0, ψ) ∈ ∂ E, xt (t0, ψ) ∈ Ec for t ∈ [t0, t∗].
If (I) holds, then we can findt1 > t0 such that forφ0 ∈ K ∗

0

(φ0, x∗
t1) = α, (φ0, x∗

t∗) = β, and (φ0, x∗
t ) ∈ s∗

0(α), t ∈ [t0, t∗]. (2.9)

Set
m(t) = V1(t, xt (t0, ψ)) + V2(t, xt (t0, ψ)), t ∈ [t1, t∗].

It is easy to obtain, from (2.3), thus from (Lakshmikantham & Leela, 1969a,b),

D+m(t) � G2(t, m(t)), t ∈ [t1, t∗],
and thus

D+(φ0, m(t)) � G2(t, m(t)), t ∈ [t1, t∗].
Consequently, comparing (Lakshmikantham & Leela, 1969a, Theorem 1.4.1), we get

m(t) � r2(t, t1, m(t)), t ∈ [t1, t∗],
wherer2(t, t1, w0) is the maximal solution of (2.5) such thatr2(t1, t1, w0) = w0; therefore
for φ0 ∈ K ∗

0
(φ0, m(t)) � (φ0, r2(t, t1, m(t))), t ∈ [t1, t∗].
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Thus

(φ0, V1(t
∗, xt∗(t0, ψ)) + V2(t

∗, xt∗(t0, ψ))) � (φ0, r2(t
∗, t1, V1(t1, xt1(t0, ψ))

+V2(t1, xt1(t0, ψ)))). (2.10)

Similarly, from (2.1) we have

(φ0, V1(t1, xt1(t0, ψ))) � (φ0, r1(t1, t0, V1(t0, ψ))), (2.11)

wherer1(t1, t0, u0) is the maximal solution of (2.4).
From the fact thatu0 = V1(t0, ψ1) < α1 and using (2.6) we obtain forφ0 ∈ K ∗

0

(φ0, r1(t1, t0, V1(t0, ψ))) � β0. (2.12)

Furthermore,

(φ0, V2(t1, xt1(t0, ψ))) � a(α). (2.13)

From (2.12) and (2.13), we have

(φ0, w0) = (φ0, V1(t1, xt1(t0, ψ))) + (φ0, V2(t1, xt1(t0, ψ)))

< β0 + a(α) = α2. (2.14)

Hence, from (2.2), (2.7), (2.8), (2.9), (2.10), (2.14), and the fact thatV1 � 0,

b(β) � β1(α2) � b(β). (2.15)

If the case (II) holds, then we again arrive at the inequality (2.10), wheret1 > t satisfies
(2.9). Now, we have in place of (2.11) the inequality

(φ0, V1(t1, xt1(t0, ψ))) � (φ0, r1(t1, t2, V1(t2, xt2(t0, ψ)))).

Sincext2(t0, ψ) ∈ ∂ E and(φ0, V1(t2, xt2(t0, ψ))) � α∗ � α1 it follows that we get the
same contradiction in (2.15). This proves that

(φ0, x∗
t (t0, ψ)) < β for t � t0, φ0 ∈ K ∗

0 ,

whenever(φ0, ψ) < α, α � ρ; the proof is complete. �

3. φ0-equistability

In this section, we discuss the concept of the perturbing Liapunov functional for theφ0-
equistability property of the system of functional differential equations (1.1).

THEOREM 2 Suppose that there exist two functionsG1 andG2 which are defined as in
Theorem 1, and let there exist two functionalsV1(t, xt ) ∈ C[J × s0(ρ), K ], V2(t, xt ) ∈
C[J × s0(ρ) ∩ sc

0(η), K ], with V1(t, 0) = V2(t, 0) = G1(t, 0) = G2(t, 0) = 0 such that

(A5) V1(t, xt ) is Lipschitzian inxt and

D+(φ0, V1(t, xt )) � G1(t, V1(t, xt )), (t, xt ) ∈ J × s0(ρ); (3.1)
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(A6) V2(t, xt ) is Lipschitzain inxt and

b(φ0, x∗
t ) � (φ0, V2(t, xt )) � a(φ0, x∗

t ), (3.2)

wherea, b ∈ K, (t, xt ) ∈ (J × s0(ρ) ∩ sc
0(η)), andφ0 ∈ K ∗

0;
(A7) for eachφ0 ∈ K ∗

0 , (t, xt ) ∈ (J × s0(ρ) ∩ sc
0(η)),

D+(φ0, V1(t, xt )) + D+(φ0, V2(t, xt )) � G2(t, V1(t, xt ) + V2(t, xt ));
(A8) if the zero solution of the system (2.4) isφ0-equistable, and if the zero solution

of the system (2.5) is uniformlyφ0-stable.

Then the zero solution of (1.1) isφ0-equistable.

Proof. From our assumption, the zero solution of (2.5) is uniformlyφ0-stable. Let 0<

ε < ρ; givenb(ε) > 0 andt0 ∈ R
+, there existsδ0 = δ0(ε) > 0 such that forφ0 ∈ K ∗

0

(φ0, r2(t, t0, w0)) < b(ε), t � t0, (3.3)

provided that(φ0, w0) < δ, wherer2(t, t0, w0) is the maximal solution of (2.5).
From the condition (A6), there existsδ2 = δ2(ε) > 0 such that

a(δ0) < 1
2δ. (3.4)

From our assumption, the zero solution of (2.4) isφ0-equistable; given12δ, andt0 ∈ R
+,

there existsδ∗ = δ∗(t0, ε) > 0 such that forφ0 ∈ K ∗
0

(φ0, r1(t, t0, u0)) < 1
2δ, t � t0, (3.5)

provided that(φ0, u0) < δ∗, r1(t, t0, u0) being the maximal solution of (2.4).
Following (Lakshmikantham & Leela, 1976), chooseψ = V1(t0, ψ); sinceV1(t, xt ) is

continuous andV1(t, 0) = 0, there existsδ1 > 0 such that forφ0 ∈ K ∗
0

(φ0, ψ) < δ �⇒ (φ0, x∗
t (t0, ψ)) < ε, t � t0. (3.6)

Suppose that this is not true, then there existt1, t2 > t0 such that for(φ0, ψ) < δ,

(φ0, x∗
t1(t0, ψ)) = ε,

(φ0, x∗
t2(t0, ψ)) = δ,

(φ0, x∗
t (t0, ψ)) ∈ s0(ε) ∩ sc

0(δ0), t ∈ [t1, t2].


 (3.7)

Let δ2 = η, so that the condition (A6) is ensured. Setting

m(t) = V1(t, xt (t0, ψ)) + V2·η(t, xt (t0, ψ)), t ∈ [t1, t0],
we get forφ0 ∈ K ∗

0

D+(φ0, m(t)) � g2(t, m(t)), t ∈ [t1, t2],
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which yields

(φ0, V1(t2, xt2(t0, ψ)) + V2·η(t2, xt2(t0, ψ))) � (φ0, r2(t2, t1, V1(t1, xt1(t0, ψ))

+V2·η(t1, xt1(t0, ψ)))),

wherer2(t1, t1, w0) = w0, r2(t1, t1, w0) is the maximal solution of (2.5). Also, we have

(φ0, V1(t1, xt1(t0, ψ))) � (φ0, r1(t1, t0, V1(t0, ψ))),

wherer1(t1, t0, u0) is the maximal solution of (2.4).
By (3.5), and (3.6) we have

(φ0, V1(t1, xt1(t0, ψ))) � 1
2δ. (3.8)

From (3.4), and (3.7) we get

(φ0, V2·η(t1, x∗
t1(t0, ψ))) < 1

2δ. (3.9)

Thus (3.3), (3.7), (3.8), (3.9) and (A6) yield the following contradiction:

b(ε) = b(φ0, x∗
t1(t0, ψ))

� (φ0, V2.η(t1, x∗
t1(t0, ψ)))

� a(φ0, x∗
t2(t0, ψ))

= a(δ)

� b(ε).

Thus, the zero solution of (1.1) isφ0-equistable, and the proof is complete. �

REFERENCES

AKPAN, E. P. & AKINYELE , O. (1992) On theφ0-stability of comparison differential systems.J.
Math. Anal. Appl., 164, 307–324.

EL-SHEIKH, M. M. A. & SOLIMAN , A. A. (1995)φ0-stability criteria of nonlinear systems of
differential equations.Pan Amer. Math. J., 5, 17–30.

EL-SHEIKH, M. M. A. & SOLIMAN , A. A. (2000) On stability of nonlinear systems of
functional differential equations.Appl. Math. Comput., 107, 81–93.

KOKSAL, S. (1992a) Stability properties and perturbing Liapunov functions.J. Applic. Anal., 43,
99–107.

KOKSAL, S. (1992b) Boundedness properties and perturbing Liapunov functions.Math. Methods
Appl. Sci., 163, 73–78.

LAKSHMIKANTHAM , V. & L EELA, S. (1969)Differential and Integral Inequalities, I. New York:
Academic Press.

LAKSHMIKANTHAM , V. & L EELA, S. (1969)Differential and Integral Inequalities, II. New York:
Academic Press.

LAKSHMIKANTHAM , V. & L EELA, S. (1976) On perturbing Liapunov functions.Math. Systems
Theory, 10, 85–90.

SOLIMAN , A. A. (2002) On perturbing Liapunov functional.Appl. Math. Comput., 132, 319–325.


