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In this paper we will extend the perturbing Liapunov function method to systems of
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1. Introduction

Let R" be Ecludeam-dimensional real space, with any convenient ngrm|| and scalar
product (., )<|l . Il . I, Rt = [0,00) andC[R* x R", R"] denotes the space of
continuous mapping®* x R" into R". The following definitions (Akpan & Akinyele,
1992) will be needed in the sequel.

DEFINITION 1.1 A proper subseK c R" is called acone if

() AK c K, 2 >0, (i) K + K c K, (iii) K = K, (iv) K° # 0, (v) KN (=K) =0,
whereK and K° denote the closure and interior &f respectively, and K denotes the
boundary ofK. The order relation ofR" induced by the conK is defined as follows.

Letx, y € K thenx <g,<= y — x € K, andx Skge= Yy —x e K®.
DEFINITION 1.2 ThesetK* is called theadjoint cone if
K¥={peR":¢,x >0}, xeKk,
satisfies properties (i)—(v) of Definition 1.1.

DEFINITION 1.3 A functiong : D — R", D c R", is alled guasimonotone relative
to the coneK, if wheneverx,y € D andy — x € 9K, there existspp € K such that

(¢o, y — x) = 0and(¢o, g(y) — 9(x)) > 0.

Consider the system of functional differential equations
X'=ft.x), Xo=1, (1.1)
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wheref € C[J x Cp, K], R" is Euclideam-dimensional real spacé, = [tg, oo],

o" =CI[[-r,0L,R"], Co={pep™:lldllo<p} and [ ¢ lo= _max I é©) I

HereC[J x Cq, K] denotes the space of continuous mappidigsCo into K. Forx; (s) =
X(t + ), —r < s < 0, andx¢(tg, ¥) is a solution of (1.1) with initial valuesy, = .
Define

So(p) = {Xt € Co |l X ll< p}.

The Liapunov function plays an essential role in determining the zero solution of the
system of ordinary of differential equations.

Lakshmikantham & Leela (1976) introduced the method of perturbing the Liapunov
function for systems of ordinary differential equations, and Soliman (2002) extended this
method to systems of functional differential equations. This method discussed non-uniform
properties of solutions of systems of differential equations.

Stability properties of systems of differential equations have been of interest to many
authors via perturbing Liapunov function (see Koksal, 1992a,b).The notigg-stiability
was introduced by (Akpan & Akinyele, 1992), and in (El-sheikh & Soliman, 1995, 2000)
the notion was improved and extended to systems of functional differential equations.

The main purpose of this paper is to discuss the notiongafquiboundedness and
¢o-equistability of the system (1.1) via the perturbing Liapunov functional of (Soliman,
2002).

Following (Lakshmikantham & Leela, 1969b), we define a Liapunov functional:
V(t, Xt) € C[J x Co, R"]is Lipschitzain inx, and the functional is

1
DTV (t, x) = li IVt +h, —V(t, x)].
(t, x¢) er2+ SUph[ (t + h, Xt4+n) (t, xp)]

The first work dedicated to this method was done by Lakshmikantham & Leela (1976).
The following is somewhat new and is related to a definition of (Akpan & Akinyele,
1992).

DEFINITION 1.4 A solutionx;(to, ¥) of (1.1) is said to beg-equibounded if there exist
positive constant! (to, §) > 0 and § > 0, such that fory € K3

(g0, ¥) < 8 = (g0, %) < M(to, 8).
DEFINITION 1.5 (Akpan & Akinyele, 1992). The zero solution of (1.1) is said to be

¢o-equistable if fore > 0,tg € J, there exists a positive functiod(tp, ¢) > 0 that is
continuous irtg such that fokyo € K

(¢01 Xt*) < 67 t 2 tOs
provided thai(¢o, ¥) < &, wherex;" is the maximal solution of (1.1).

In the case of uniforngo-stability, § is indepentent ofy.
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2. ¢o-equiboundedness

In this section, we discusgy-boundedness of the systems (1.1) via perturbing Liapunov
functional. Now, we define the following class.

DEFINITION 2.1 A functionb(r) is said to be belong the clagsif b € C[(0, p), R*],
b(0) = 0,b(r) — 0asr — 0, andb(r) is strictly increasing im.

THEOREM1 Let E C Cp be a compact subset. Suppose that there exist two functionals
Vi(t,x) € C[J x EC, K], Va(t, x) € C[J x s5(p), K], and there exist two functions

G1 € C[RT x RT,R"], G, € C[RT x R*, R"] with Vy(t,0) = Va(t,0) = G1(t,0) =

G2(t, 0) = Osuch that forp € K

(A1) Va(t, %) is Lipschitzian inx; and
D™ (go. Vi(t, %)) < Ga(t, Va(t, X)), (t,x) € I x ES; (2.1)
(A2) Va(t, x¢) is Lipschitzain with respect tg; and
b(¢o, X{') < (¢o, V2) < algo, X)), (2.2)

wherea, b € R, ¢o € K§, and(t, x) € (J x sf);
(Az) foreach(t, x{) € J x s§,

D" (0. V1) + D (¢, V2) < Ga(t, Va(t, X)) + Va(t, X)) (2.3)
(A4) if the zero solution of the system of differential equations
u' =Gi(t,u), u(t,u)=ug (2.4)
is ¢po-equibounded, and if the zero solution of the system
w' = Ga(t,w), w(to) = wo (2.5)
is uniformly ¢o-bounded.

Then the zero solution of (1.1) #-equibounded.

Proof. SinceE is a compact subset €fy, there existep > 0 such thaty(p) D so(E, po)
for somepg > 0, where

So(E, po) = {Xt € Co : d(Xt, E) < po},

where
dxt, E) = inf || xt —yt Il .
yieE

Lett € RT, a < p be given, assume that = a1 (to, &) = maxag, o*), where

ao = ma{[Vi(to, ¥) : ¢ € so(er) N EC]

anda™ > Vi(t, xp), for (t, x;) € J x 0E.
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Since the zero solution of (2.4) i%-equibounded, given; > 0 andty € R™, there
exists Bg = Bo(t, «1) such that forpg € K*

(¢o, r1(t, to, Upg)) < Bo, t = to, (2.6)

whenever(¢o, Ug) < a1, wherer(t, tg, Up) is the maximal solution of (2.4).
Also, since the zero solution of (2.5) is uniformpy-bounded, giverz > 0, tg € RT,
there existg1(a2) > 0, such thatyo € Kj

(¢0, r2(t, to, Ug)) < Pr(ar), t=>to, (2.7)

provided that¢o, wo) < a2, Wherers(t, to, wo) is the maximal solution of (2.5).
Now, we chooselg = Vi(tg, ¥), anda2 = a(x) + Bo. Asb(u) — oo withu — oo
we can choosg = B(to, @) such that

b(B) > Pi(a2). (2.8)

Now, let (¢o, ¥) € so(a), which implies that the maximal solutioxy'(to, ¥) satisfies
(9o, ") € so(B) for t > to. Suppose that this is not true, then there exists tg for the
maximal solutiorx;* (o, ¥) of (1.1), with (¢o, ¥) € So(«), such that

(o, X{+(to, ¥)) = B.
Sincesy(E, p) C so(a), there are two possibilities to consider:

(1) x¢(to, ¥) € E®, fort € [to, t*],
(II) there existdy > tg such that

X (to, ) € 9E, Xt (to, ) € E® fort € [to, t*].
If (1) holds, then we can finth > to such that fokpg € K
(9o, %) =, (g0, %) =B, and (o, %) € (@), t € to, t*]. (2.9)

Set
m(t) = Vi(t, x¢(to, ¥)) + Va(t, X¢(to, ¥)), t € [tg, t*].

Itis easy to obtain, from (2.3), thus from (Lakshmikantham & Leela, 1969a,b),
Dfm(t) < Ga(t,m(t), t e [ty t*],

and thus
D (¢o, m(t)) < Ga(t, m(t)), t e [t t*].

Consequently, comparing (Lakshmikantham & Leela, 1969a, Theorem 1.4.1), we get
m(t) < ra(t, tg, mt)), t € [tg, t*],

wherer(t, t1, wo) is the maximal solution of (2.5) such thaf(ty, t1, wo) = wo; therefore
for ¢o € K3
(¢o0, M(1)) < (go, ra(t, tz, m(t))), t e [tg, t*].
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Thus
(¢o, Va(t*, Xt (to, ¥)) + Va(t™, Xe=(to, ¥))) < (¢o, r2(t*, t1, Va(te, Xy, (to, ¥))
+Va(ty, X (to, ¥)))). (2.10)
Similarly, from (2.1) we have
(¢o, Vi(ty, Xy, (to, ¥))) < (o, ra(t, to, Va(to, ¥))), (2.11)

wherer(t1, to, Ug) is the maximal solution of (2.4).
From the fact thatip = V1 (to, ¥1) < a1 and using (2.6) we obtain fafp € K

(¢o, r1(ta, to, Va(to, ¥))) < Bo- (2.12)
Furthermore,

(¢0, Va(t1, Xy (to, ¥))) < a(a). (2.13)
From (2.12) and (2.13), we have

(90, wo) = (¢o, Vi(l1, Xy (to, ¥))) + (¢o, Va(t, Xy, (to, ¥)))
< Bo+a) = az. (2.14)

Hence, from (2.2), (2.7), (2.8), (2.9), (2.10), (2.14), and the fact\that O,
b(B) < Bi(a2) < b(B). (2.15)

If the case (Il) holds, then we again arrive at the inequality (2.10), wheret satisfies
(2.9). Now, we have in place of (2.11) the inequality

(¢o, Va(t1, X, (to, ¥))) < (o, ra(ty, to, Va(t2, X, (to, ¥)))).

Sincex, (to, ) € dE and (¢o, Vi(t2, Xt,(to, ¥))) < a* < oy it follows that we get the
same contradiction in (2.15). This proves that

(¢o, X{ (to, ¥)) < B fort > to, o € Ky,

whenevel(¢o, ¥) < a, « > p; the proof is complete. 0

3. ¢o-equistability

In this section, we discuss the concept of the perturbing Liapunov functional faipthe
equistability property of the system of functional differential equations (1.1).

THEOREM 2 Suppose that there exist two functio®s and G, which are defined as in
Theorem 1, and let there exist two function®lgt, x;) € C[J x sp(p), K1, Va(t, X) €
C[J x so(p) Ns§(m), K1, with Vi(t, 0) = Va(t, 0) = Ga(t, 0) = Ga(t, 0) = O such that

(As) Val(t, %) is Lipschitzian inx; and

DT (¢o, Vi(t, X)) < Ga(t, Va(t, X)), (t, %) € I x So(p); (3.1)
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(Ag) Val(t, %) is Lipschitzain inx; and

b(go, X) < (¢o, Va(t, X)) < aldo. X;), (3.2)

wherea, b € K, (t, %) € (J x so(p) Ns5(17)), andgo € K;
(A7) foreachgo € Kg, (t, xt) € (I x so(p) N s5(m),

DT (g0, Va(t, X)) + DT (g0, Va(t, X)) < Ga(t, Va(t, Xt) + Va(t, X));

(Ag) if the zero solution of the system (2.4)ig-equistable, and if the zero solution
of the system (2.5) is uniformlgo-stable.

Then the zero solution of (1.1) ¢-equistable.

Proof. From our assumption, the zero solution of (2.5) is uniforgdystable. Let O<
€ < p; givenb(e) > Oandty € R, there existsy = () > 0 such that forpg € Ks

(o, r2(t, to, wo)) < b(e), t>to, (3.3)

provided that ¢, wo) < 8, wherera(t, to, wo) is the maximal solution of (2.5).
From the condition (&), there exist$, = §2(¢) > 0 such that

ado) < 3. (3.4)

From our assumption, the zero solution of (2.4p¢sequistable; giver%é, andtp € R,
there exist$* = §*(to, €) > 0 such that forpp € Kg

(¢o.r1(t, to, up)) < 38, t>to, (3.5)

provided that¢g, Ug) < 8*,r1(t, to, Ug) being the maximal solution of (2.4).
Following (Lakshmikantham & Leela, 1976), choage= V1 (1o, ¥); sinceVi(t, %) is
continuous and/1(t, 0) = 0, there exists; > 0 such that forpg € Kj

(g0, ¥) <8 = (o0, X{ (o, ¥)) <€, t>to. (3.6)
Suppose that this is not true, then there efist, > tg such that for¢g, ¥) < 8,
(¢o, X;; (to, ¥)) =€,
(¢o, Xz, (to, ¥)) =6, (3.7)
(¢o. X{ (to, ¥)) € so(€) Ns5(80), T € [ty, T2].
Let 82 = n, so that the condition (4) is ensured. Setting
m(t) = Va(t, X (to, ¥)) + Vo, (t, Xt (to, ¥)), t € [t1, to],

we get forgp € K§

D (g0, m(t)) < ga(t, m(t)), t e[ty tal,
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which yields

(9o, V1(t2, X, (to, ¥)) + Vo, (t2, X, (to, ¥))) < (¢o, r2(t2, ta, Vi(ta, X, (to, ¥))
+Vo., (t1, Xy (to, ¥)))),

wherera(t1, t1, wo) = wo, r2(t1, t1, wo) is the maximal solution of (2.5). Also, we have

(¢o, Va(t1, Xy, (to, ¥))) < (o, ra(ty, to, Va(to, ¥))),

wherer(t1, to, Ug) is the maximal solution of (2.4).
By (3.5), and (3.6) we have

(0. Va(t1, Xy, (to, ¥))) < 3. (3.8)

From (3.4), and (3.7) we get

(0. Va.y (t1, X5 (to, ¥))) < 36. (3.9)
Thus (3.3), (3.7), (3.8), (3.9) and {yield the following contradiction:

b(e) = b(¢o, X, (to, ¥))
< (¢o, Vo (t1, X, (to, ¥)))
< al¢o, xg, (to, ¥))

Thus, the zero solution of (1.1) ¢-equistable, and the proof is complete. O
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